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We study the rate of uniform approximation to continuous functions/lx, y), 2rr­
periodic in each variable, in Lipschitz classes Lip( iX, fJ) and in Zygmund classes
Z(iX, fJ), 0 < iX, fJ.:; I, by Cesaro means a;;;nU) of positive orders of the rectangular
partial sums of double Fourier series. The rate of uniform approximation to the
conjugate functionspI.OI,pO,ll, andTLlI by the corresponding Cesaro means is also
discussed in detaiL The difference between the classes Lip(iX, {3) and Z(iX, {3), similar
to the one-dimensional case, appears again when max(iX, fJ) = 1. (Compare
Theorems 2 and 3 with Theorems 4 and 5.) One surprising result is the following:
The uniform approximation rate by a;:;nC1Il,oll to .TIl.DI is worse in general than that
by a~~n(.JIl,ll) to p Lli for f E Lip( I, I l, In fact, the appearance of an extra factor
[log(n+2lF in the former case is unavoidable (see Theorem 6), All approximation
rates we obtain, with one exception, are shown to be exact. Two conjectures are
also included, (', 1987 Academic Press, Inc

1. INTRODUCTION: CONJUGATE SERIES AND FUNCTIONS

Let f(x, y) be a complex valued function, 2n-periodic in each variable
and integrable over the two-dimensional torus - n < x, y ~ n, in symbols

* This paper was written while both authors visited Indiana University, Bloomington,
Indiana, U.S.A" during the summer term 1985, and while the first-named author visited the
University of Wisconsin, Madison, Wisconsin, U.S,A" during the academic year 1985/86,
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fEL1TtX1Tt' We remind the reader that the double Fourier series of f is
defined by

00

S[f] = L
00

'" c. ei(Jx+ky)L. jk , (1.1 )

where

j=-oo k=-oo

C =c(f)=-I-fTt fTt f(u v) e-i(Ju+kv)dudv (1.2)
Ik jk (2n)1 -Tt -Tt '

(j, k = ..., - 1, 0, I, ... ). The definitions of the three conjugate series are

00

L (- i sign j) Cjkei(JX + ky) (1.3)
j=-'XJk=-oo

(conjugate with respect to x),

00

L (-isignk)cjkei(Jx+kY ) (1.4 )
j=-oc,'k=-w

(conjugate with respect to y), and

00

L (- i sign j)( - i sign k) CJkei(JX + ky) (1.5 )
j=-ook=--oo

(conjugate with respect to x and y). An interrelation among the series (1.1)
and (1.3)-( 1.5) is expressed by

S[f] + is(I,O)[f] + is(O,l)[f] + i1S(1,11[f]

'x' 00 :y:;. C/J

= Coo + 2 L cjUZJ+ 2 L COk wk + 4 L L CJk ZJW\
i~l k~l j~lk=l

where

and

The corresponding conjugate functions are

1 ITt 1 1
pl,O)(X, y) = -~ 0 [f(x + u, y) - f(x- u, y)] 2" cot 2" u du,

1 ITt 1 1PO,I)(X, y)= -~ 0 [f(x, y+v)-f(x, y-v)]2"cot2"vdv,

(1.6)

(1.7)
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I In on
PI,I)(X, y)=2 j [f(x+u, y+v)-f(x-u, y+v)

n ° °
-f(x+u, y-v)+f(x-u, y-v)]

x -! cot -! u -! cot -! v du dv' (L8)

In (1.6 )-( 1.8) the integrals are taken in the "principal value" sense at the
point u = 0, v = 0, and u = v = 0, respectively. It follows from the
corresponding one-dimensional result that iff E L 2n x 2n' thenpl,O) andpo,ll
exist a.e. Zygmund [!O] proved that iff E L log + L 2n x 2n' then PI,I) also
exists a.e.

Sometimes we shall write P I,O))(X, y) = P I,O)(f x, y), etc., indicating the
original function whose conjugate is taken.

Let f(x, y) be a continuous function, 2n-periodic in each variable, in
symbols fE C2nx2n' The (partial) moduli of continuity of f are defined for
b~O by

wAf b)=wl,Af (5)= sup max If(x+u, y)-f(x, y)!
luj ~() X.y

and

wv(f b) = wl,)f b) = sup max If(x, y + v) - f(x, y)l.
Ivl <;6 X,v

Obviously, both wAf; b) and w,C/; b) are nondecreasing functions.
We recall that the Lipschitz class Lip(a, f3), 0< a, f3 ~ I, is defined to be

Lip(a, f3) = {f E C 2n x 2n: wAf; b) = 0(b X
)

and w,(f b) = (((b ll )}.

Cesari [1] proved that if f E Lip(a, a), °<a ~ I, then the conjugate
functionpl,l) is in Lip(a',a') for each a', O<a'<a, but need not be in
Lip(a, a). An analogous statement for PI,O) and PO,I) was proved by
Zhak [8].

The (partial) moduli of smoothness of a function f E C2n x 2n are defined
for 15 ~°by

w 2.Af; b) = sup max If(x + u, y) +f(x - u, y) - 2f(x, y)1

and

w 2",(f b) = sup max If(x, y + v) +f(x, y - v) - 2f(x, y)l.
Ivl <;6 x,y

Clearly, both w 2.Af, b) and w 2...(f, b) are nondecreasing functions; further­
more,

w2,Af, b) ~ 2wAf b) and w 2,,(f b) ~ 2w,(f b). (L9)



APPROXIMATION TO CONTINUOUS FUNCTIONS 349

We note that the Zygmund class Z(a, f3) (sometimes denoted by HaJJ),°< 0, f3 ~ 2, is defined to be

Z(a, f3) = {f EC2rr x2rr: w2,Af, b) = CD(15 X
) and w2,v(f, b) = CD(15 fJ )},

It follows from (1.9) that, for O<a, f3~ 1, Lip(a, f3)<;;Z(a, f3), while
extending the familiar argument (see, e,g" [1 1, p, 44]) from the one-dimen­
sional case to the two-dimensional case, it is easy to see that, for
O<a,f3< 1, actually Lip(a,f3)=Z(a,f3), and, for O<a<f3= 1,

Z(a, 1)= {fEC2rrx2rr:w)f,15)=CD(15X) and w 2,\.(f,15)=CD(15)},

It is important to observe that if fEZ(a,f3), 0<a,f3~2, then the
integrals in (1.6 )-( 1.8) exist in the (absolute) Lebesgue sense and thus by
Fubini's theorem

2, ApPROXIMATION BY DOUBLE FOURIER SERIES

We associate with the double Fourier series (1.1) the symmetric rec­
tangular partial sums

m fl

smn(f,x,y)= L L c/k(f)eiUX+ky) (m,n=O, 1,..,), (2.1)
j= mk=-n

For y, 15 > - 1, the Cesaro means a:::n(f, x, y) of orders y and 15, or shortly,
the (C, y, 15 )-means of series (1,1) are defined by

(m, n = 0, 1,.. ,),

where

A;;' = (1 + m) = (1 + 1)(y + 2) " , (y + m)
m m!

for m = 1, 2, .., and A/;= 1. (See, e,g" [11, p, 77].)
It follows from (1.2) that

. 1 frr frra:::nCf, x, y) =2 f(x + u, Y + v) K;;'(u) K~(v) du dv,
n -tr --rr

640494.4

(2.2)

(2,3 )
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where K;Ju) and K;;( v) are the Fejer kernels in terms of u and [" respec­
tively:

Here

1 In

K;,,(u) =A7L A;;, Ii Di(u).
fn.l=o

1 I

D) u) = 2: + I'~ 1 cos flU

(2.4 )

is the Dirichlet kernel. The following representation is an easy consequence
of (2.3),

where

. 1 In In .(J;;;'"U; x, y) -f(x, y) =2: rP\\(u, v) K;;,(u) K~(v) du dv,
n 0 0

rP",(u, v)=f(x+u, y+v)+f(x-u, y+v)+f(x+u, y-v)

+f(x-u, v-v)-4f(x, .v).

(2.5 )

This representation plays a crucial role in the sequel due to the estimate

(u, v~O).

For fEe 2n x 2n' let £111"(/) denote the best uniform approximation to f
by double trigonometric polynomials Till" (x, y) of degree ~m with respect
to x and of degree ~ n with respect to y:

£111"(/) = inf Ilf(x, y) - TIII,,(x, Y)II;
T mll

we use II' II to denote the usual maximum norm in C 2n x 2n' i.e.,

Ilf(x, y) - TIII,,(x, .1')11 = max If(x, y) - T",,,(x, y)l·
C~

Analogous to the one-dimensional case, ifjE Z(ex, /3), 0 < ex, fJ ~ 1, then

£1II,,(f) = (( em ~ 1)' + (n ~ 1)f}
This is an immediate consequence of

PROPOSITION. IfI E C 2n x 2n' then
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We are unable to find a reference to this proposition. Without entering
into the details, we note that our proof closely follows that of the
corresponding one-dimensional result.

The following theorem characterizes the rate of approximation to
functions fin Z(IX, {3) by (C, )', <5)-means of their Fourier series. The picture
obtained is similar to the one-dimensional case. That is, as far as the order
of magnitude is concerned, the approximation rate by (J;:n(f, x, y) is the
same as that given by £mn(f) is the case max(IX, {3) < 1, while it gets worse
by a factor "log" in the case max( IX, {3) = 1.

THEOREM 1. Iff E £(IX, {3), 0 < IX, {3 ~ 1 and)', <5 > 0, then

.r;:n(f) = 11(J;:nCf, x, y)-f(x, y)11

= (9 em ~ l)~ + "'--(n-~-:-1""-';)P)

=(9( 1 +log(n+2))
(m + 1)~ n + 1

(
IOg(m + 2) log(n + 2))= (9 + -..:e..:-_--'-

m+l n+l

if 0 < IX, {3 < 1,

if O<IX<{3= 1,

if IX={3= 1. (2.6)

This result for)' > IX and <5 > {3 was proved in [4]. We emphasize that,
according to (2.6), the rate of approximation does not depend on )' or <5.

The rate of approximation in each case of (2.6) is exact. This follows
easily from the one-dimensional counterexamples (see, e.g., [11, p. 123]).
Indeed, it suffices to take into account that if f(x, y)=g(x)+h(y) with
g ELip IX and hE Lip {3, 0 < IX, {3 ~ 1, then f E Lip( IX, {3) and

(J;:Jf, x, y) = (J);,( g, x) + (J~(h, y).

3. ApPROXIMATION BY DOUBLE CONJUGATE SERIES

The symmetric rectangular partial sums s:':~O)(f, x, y), S(O.I)(f, x, y), and
S(l,l)(f, x, y); the Cesaro means (l,O)a;:n(f, x, y), (O,l)a;:n(f, x, y), and
(l,l)a;:n(f, x, y) of orders)' and <5 for the double conjugate series (1.3 )-( 1.5)
are defined analogously to (2.1) and (2.2). For instance,

m n

s:':~O)(f, x, y) = L L (- i sign j) Cjk(f) ei(jx + ky)
j=-mk=-n

640/49/4-4 •
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I /}/!I

I LOla"') (I" Y 1') ---" '\' '\' AlA') ! :vjl}"O) (I: x, .1')
nm . ,- ~. - 4~' 4() ,1..... L m I fI '" f\ .

.i nr' Jlj---'-() k=()

(m, n=O, I, ... ).

The key fact is that iff EZ(cl., In with a., 13> 0, then the integral in (1.6)
exists in the (absolute) Lebesgue sense and by Fubini's theorem SILOI[fJ is
the double Fourier series ofllLol, and consequently

VILO!(/" Y 1')= \' (l ILO ) I: ),)
. ""I ."'. ' nlfl . , . , ..

and
I LOliJ"') (f" Y 1') = (J"') (/"'11,0) x 1'),

IntI. • • • • nlll . " •

From now on, we shall use the notations indicated in the right-hand sides
of these equalities. Similar observations pertain to S'O,I) [fJ and S'I.I I[f].

The following two theorems characterize the rate of approximation to
the conjugate functions p Ul( and pI.! I by the (C, (', b)-means of the
corresponding conjugate series for functions fE Z(a., 13). We will not deal
withl lO,I) separately. All theorems onlllO )can be reformulated forl lO,l) by
taking their symmetric counterparts.

Different from the one-dimensional case, the approximation rate both by
(J;}~),JPIOI) tol1101 and by (J;}~jJlll.1l) toPI.I) is always worse at least by a
factor "log" than the one that occurs in En",(f'). More precisely, the
approximation rate by (J;;~)/}UILO)) to pial contains an extra factor
log(m + 2) only if a. = I, but it does contain an extra factor log(n + 2) if
13< I and even an extra factor [log(n+2)J 2 if 13= I. On the other hand,
the approximation rate by (J;;~)/}(p 1.1 I) to p 1,I) symmetrically contains an
extra "log" factor in both m and n if max(a., 13) < I, and an extra "10g b

'

factor in both m and n if a. = 13 = I,

THEOREM 2. Iff EZ( a., 13), 0< a., f3:S: 1, and ;, b > 0, then

.y-"') (]ILOI) = II (J;") (111 .0 ) X 1') _]'I,OI(X 1')11
HUI - nUl. " ." , ""

(
I log(n + 2))

- (1'1 +--'--,,-
- " (m+I)' (n+l)fi

= (!) (IOg(m + 2) + log(n + 2))
m+ 1 (n+ 1)f!

=fS:( 1 + [lOg(n+2)J
2

)

(m+ l)X n+ 1

= (!) (IOg(m + 2) + [log(n + 2)]2)
m+I n+l

if °< a., 13 < I,

ifO<f3<a.=I,

ifO<a.<f3=I,

ifa.=f3=1. (3.1)
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THEOREM 3. Iff E Z( ex, f3), 0 < ex, f3::;; I, and "I, b > 0, then

:!IiS(111,1»)=llai'<i(11I,lJ x V)-JII,l)(x v)11
' Inn. 0'111 . ~ ~ , .. ~ , 0/

353

if 0 < ex, f3 < 1,

if 0 < ex < (i = I,

ifO<f3<I,

= (I (IOg(m + 2) + log(n + 2))
(m + 1)' (n + I )f!

= (I.; (IOg(m + 2) + [log(n + 2) J 2)
(m + I)' n + 1

= (Ii ((log(m + 2)J2 + [log(n + 2)J2) if ex = f3 = I. (3.2)
m+ 1 n+ I

Theorems 2 and 3 were proved in [5 J for the cases ex> y and Ii> b.
Again the rate of approximation does not depend on r or b.

Both Theorems 2 and 3 can be improved for functions f E Lip( ex, f3),
0< ex, f3::;; I, in the cases where ex = 1 and max(ex, f3) = I, respectively. The
approximation rate by a;;;i,,(pIOJ) to pUll drops the factor log(m + 2) for
ex = I, but the factor log(n + 2) does remain for f3 < 1, and, surprisingly, the
factor [Iog(n + 2)J2 is unavoidable for (i = I. On the other hand, the
approximation rate by a;;',~,(PI,l}) to PI,I} contains only "log" factors in
both m and n for all ex and f3, independently of whether ex, f3 < 1 or = I,

THEOREM 4. Ilf E Lip(ex, Ii), 0 < ex, Ii::;; 1 and y, b > 0, then

//i<i (Jll.O}) = (I.' ( 1 + log(n + 2))
11111 (m+lt (n+l)fi

=(1)( I +[log(n+2)f) iff3=1. (3.3)
(m+ I)' n+ 1

THEOREM 5. Iff E Lip( ex, f3), 0 < ex, f3::;; 1 and y, b > 0, then

:!Ii'S (111.1)) = (I) (IOg(m + 2) + log(n + 2)).
11111 ' (m + 1)' (n + 1 )13

(3.4 )

The rate of approximation in Theorems 4 and 5 is exact. This is shown
by the next two theorems.

THEOREM 6. There exist functions f = fXI3 E Lip(ex, f3), 0 < ex, f3::;; I, such
that for any "I, b > 0 neither of the estimates
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if 0 < /3 < I,
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Y;;mcl l
1,0)) = 0 ((m ~ 1y) + ~)(),(n))

, (IOg(n + 2))= @(i(m)) + 0
(n + I )fl

=@(A(m))+o([(1og(n+2)]2) if /3= I
n+ I . , (3.5 )

can hold.

Here and in the sequel, by {A(m): m = 0, 1, ... } we denote an arbitrary
nonincreasing sequence of positive numbers tending to 0,

THEOREM 7. There exist functions f = f, E Lip(a, 1), 0 < a ~ I, such that
for any y, b > 0 the estimate

, (IOg(m + 2))y;-o(](I.I))=O +@(A(n))
mn (m + 1)'

(3.6)

cannot hold.

From Theorems 6 and 7 it follows immediately that estimates (3.1 )(i)
and (3.1)(iii) in Theorem 2 as well as estimate (3.2)(i) and the first part of
(3.2)( ii) are exact.

Finally, we show that estimates (3.1 )(ii) and (3.1 )(iv) are also exact; that
is, Theorem 2 is best possible.

THEOREM 8. There exists a function f E Z( 1, 1) such that for any /, b > 0
the estimate

y','o (]1l.0)) = 0 (IOg(m + 2)) + (f)(),(n))
mn m + 1

(3.7)

cannot hold.

The only estimate whose exactness we are unable to prove is (3.2)(iii).

Conjecture 1. There exists a function f E Z(l, 1) such that for any j,

b > 0 the estimate

cannot hold.
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Let g(x) be a 2n-periodic continuous function of a single variable, In

symbols gE CZrr ' We shall use the following notations:

g(x): the conjugate function to g(x),

0";;'( g, x): the mth (C, y)-mean of the partial sums of the Fourier series
of g,

Em(g): the best approximation to g by trigonometric polynomials of
degree ~m,

w(g, <:5) = WI(g, <:5): the modulus of continuity of g,

wz(g, <:5): the modulus of smoothness of g.

In the sequel, we need several well-known results from the
approximation theory of periodic continuous functions in one variable. For
the sake of convenience, we list them as follows:

(a) Generalized Privalov's theorem (see, e.g., [7, pp. 162-163, 391 ]).
If

then

f
,j w(g t)
--'- dt = CD(w(g, <:5))

() (
as <:5 ---> +0,

In particular, if

w( g, <:5) = CD( w(g, <:5)).

then

w(g, <:5) = CD(<:5'),

w(g, <:5) = CD(<:5')

=(G(<:5log*)

O<()(~I,

if 0 < ()( < I,

if ()( = I.

0<()«2, f,~0,

All these statements remain valid if "0" is substituted for "(I)" both in the
conditions and in the conclusions.

(b) Zygmund's theorem [9]. If

wz(g, <:5) = (I) (<:5' log" ~)

then
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(c) Relation between the moduli of continuity and of smoothness
(see, e.g., [7, p. 107J). If

then

w(g, b) = (!:(b a
)

= ~ (b log~)

O<a< 1,

if 0 < a < 1,

if a = 1.

(d) Alexits' theorem (see, e.g., [11, p. 123 J). if E Lip 1 if and only if

Ila;n(g, x) - g(x)11 = (! (m ~ 1),
where 11'11 is the usual "max" norm in C2n .

(e) For the Fejer kernel K;;,(u) (see (2.4)) we have

and

1 rn

- K;,,(u) du = 1
n'n

if ;'>-1

if i' >0;

(see, e.g., [11, p. 94J).
(f) Jackson's theorem (see, e.g., [7, p. 260J).

(g) Stechkin's inequalities [6; 7, p. 331].

( 1) (1 111

)W g,-- =~) -- L Ej(g)
m+l m+lj~O

and

W2 (g, m~ 1) = (!) ((m ~ 1)2 jto (j + 1) Ej ( g)).
(h) Continuity of g (see, e.g., [7, p. 319J). If

f Ej(g) < 00

j~ I j ,
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Now we present a number of lemmas. The first of them is known in the
literature, while the others are new.

LEMMA I. Ij'gEC 2][ andy>O, then

i' )-. - Y f"- g(x+u)+g(x-u)-2g(x)d
(Tm(g, X g(x)- , u

n(m + I) 1/(m + I) u-

(4.1 )

with "(Y' independent oj'm, x, and g.

This estimate was proved by Efimov [2] for "r' = I and by Guo [3] for
y>O.

The following lemma expresses an important consequence of Lemma I
often used in the sequel. In particular, it is used to prove Theorems 4
and 5.

LEMMA 2. Ij' g E Lip I, then

f7 g(x+u)+g(x,-u)-2g(x)du=«'(I). (4.2)
I/(m+ I) u-

Remark. In (4.2) we can equally well take the integral S7/(m + I) instead
of S~(m+ I) because of the absolute convergence of S: (g(x + u) + g(x - u)­
2g(x)) u 2 duo

Proof of Lemma 2. Applying (4.1 ) for g and y = I yields

1(-.. )_-()_ 1 f7... g(x+u)+g(x-u)-2g(x)d
(T m g, X g X - 0 u

n(m + I) 1/(m + 1) u-

(4.3 )

Clearly gELip 1 implies w 2(g,b)=0(b) and, by Zygmund's theorem,
w 2(g, b) = 0(15). Consequently,

(4.4 )
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On the other hand, by Alexits' theorem

Ila~Cg', x) - g(x)11 = (!,i (m ~ I).
Combining (4.3 )-(4.5) provides (4.2).

(4.5)

The next lemma is a natural extension of Lemma I to functions in two
variables and will be the main tool in the proofs of Theorems 1-5.

LEMMA 3. If fEe 27r x 2n and y, 6> 0, then

a;:n(f, x, y) - f(x, y)

y6 fx "f du dv

= n 2(m + l)(n + 1) 1/(111+ 1) J1/(n+ I) u 2
V

2

x {[f(X+U, y+v)+f(x~u,y+v)-2f(x, y+V)]

+ [f(X+U, y-v)+f(x-u, y-v)-2f(x, y-V)]

- 2[f(x + u, y) +.f(x - u, y) - 2l(x, y)]}

}' fX f(x+u, y)+f(x~u, y)-2f(x, y) I
+ 0 (U

n(m + I) 1;(111 + II U-

+ 6 r f f(x, y+v)+f(x,!'-v)-2f (x, Y)dv

n(n+I)·IIf1111 v-

(4.6)

with "(!," independent of m, n, x, y, andf

Before sketching the proof of this lemma, we introduce two notations we
use frequently later on. Given a function f(x, y) we can consider f as a
function of x for each fixed y. as well as a function of y for each fixed x
denoted, respectively, by

g,(x) =f(x. y) and h,(y) = f(x, y).

Obviously, if fEe 2n x 2n' then g, EC2n for every y and

gp(X)=.J!I.O)(X, y);

furthermore, h, E C2n for every x and

h,(y)=.J!°·I)(X, y).
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Proof of Lemma 3. We use representation (2.5) and the corresponding
one-dimensional representation

1 r"O";;,(gy, x) - g,(x) =; J
o

[gy(x + u) + gy(x - u) - 2gJx)] K;;'(u) du

1 fir=- [f(x+u, y)+ f(x-u, y)-2f(x, y)] K;;,(u)du.
n 0

On the basis of these representations we can deduce the recurrent relation

0"::11(f, x, y) -f(x, y) = [O"~(O";;'(gy, x) - gy(X), y) - (O";;'(gy, x) - gy(X))]

+ [O";;,(g", x) - gy(X)] + [O"~(h" y) -hAy)].(4.7)

Now, (4.6) is a consequence of (4.7) and of the repeated application of
(4.1). We do not go into further details.

The following lemma will be useful in the proofs of Theorems 6 and 7.

LEMMA 4. rlI E C2" x 2" and y, £5 > 0, then for every fixed m,

lim 110"::11(f, x, y) - O";I1(g,., x)11 = °
n --+ ,7...

and for every fixed n,

lim 1100~;;,(f,X, y)-O"~(hn y)11 =0.
m- =c

(4.8)

(4.9)

Proof We will prove only (4.8). Using representation (2.3) and the
corresponding one-dimensional representation

1 firO";;,(g,.,x)=- g,,(x+u)K;;,(u)du
, n"

1 fir fir=2: f(x+u,y)K;;'(u)K~(v)dudv,
]I-n: rr.

we get

0"~111(f, x, y) - O";;'(gy' x)

=~ f" K~,(U) Hf" [f(x + u, Y + v) - f(x + u, y)] K~(v) dV} du

1 fir
=- K;;'(u)[O"~(h<+u,y)-hx+u(Y)] du,

n _orr
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whence, by (e),

110-;,;),,(/; x, r) - 0-;;,(,1("" x)11

= (1(1 )llo-;;(h" y) - h,(Y)11 =!i( 1) as n ---+X,

which is (4.8) to be proved. Here the estimate !i( 1) is the well-known
Fejer-Riesz theorem (see, e.g., [11, pp. 94--95]) while, taking into account
that fEe 2][ x 2][ is uniformly continuous in x and Y, it follows that o( 1) does
not depend on x and Y but merely on (i. Similarly, (1'( 1) depends only on I'.

If!E Lip(ex, (3), 0 < ex, IJ ~ 1, then the conjugate functionsl' Ul), .1'°.1 1, and
.1' l.l) need not belong to the same Lip( ex, III (see [1, 8] for the case where
ex = /1), but they are in a function class close to it as Lemma 5 shows.

LEMMA 5. Iff E Lip(ex, In, 0 < ex, IJ ~ 1, then

w,(1(1.01, (i) = (I((i~) i! O<ex<1,

= (I ((i log ~) i! ex= 1; (4.10)

w,(l' 1.01, (i) = (I.! ((iIi log ~} (4.11 )

OJ)l'l,l), (i) = (I ((i' log ~) if O<ex<l,

= (0 ( (i log2 ~) i! ex = 1. (4.12)

The corresponding estimates for wJl'o.,), (i), OJr (1(O.I), (i), and
W\.(1(1·1), (i) are the symmetric counterparts of (4.11), (4.10), and (4.12),
respectively.

It follows from the corresponding one-dimensional counterexamples that
estimate (4.10) is exact, and it follows from Lemma 7 below that estimates
(4.11) and (4.12)(i) are also exact. The only estimate whose exactness we
are unable to prove is (4.12)(ii).

Conjecture 2. There exists a function f E Lip(1, 1) such that the estimate

((i---+ +0)

cannot hold.
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Proof of Lemma 5. Estimate (4.10) can be obtained via Privalov's
theorem applied to g,.(x) = f( x, y).

In order to prove (4.11), let v> 0 and choose G such that w. = fJ. Splitting
both integrals into two parts gives

]lLO)(X, Y+V)_]lLO)(X, y)

1 f"" 1 1= -~ 0 [f(x+u, y+v)-f(x-u, y+v)]"2cot"2udu

1 fV' 1 1
+~ 0 [f(x+u,y)-/(x-u,y)]"2cot"2udu

1 flt 1 1
-- [f(x+u, y+v)-/(x+u, y)]-cot-udu

IT ,,' 2 2

1 flt 1 1+- . [f(x-u,y+v)-f(x--u,y)]-2cot-2udu, (4.13)
n 1,1

whence

= (q v'~) + (0 ( vO logD= (!) ( vO log ~).

This results in (4.11).
Now we turn to the proof of (4.12). The crucial relation is (1.10). Let

u > 0 and choose I] such that I]fJ =:1.. Similar to (4.13),

]lLlI(X+U, y)_]lLlI(X, y)

1 flt 1 1
= -~ 0 [J(l.O)(x+u,y+v)-]lLO)(x+u,y-v)]"2cot"2vdv

1 flt 1 1+- []lLO)(X, Y + v) - ]l1.O)(X, y - v)] - cot - v dv
IT 0 2 2

1 fU" 1 1= -- [J(l.O)(x + u, y + v) - ]lI,O)(x + u, y - v)] - cot - v dv
IT 0 2 2

1 flt 1 1-- [J(1.0)(x + u, y + v) - ]ll,O)(X, y + v)] - cot - v dv
IT u" 2 2

1 flt 1 1+- []ll,O)(X + u,y - v) - ]ll,O)(X, y - v)] -2 cot -2 v dv. (4.14)
IT u"
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Hence for 0 < IX < I, by (4.10) and (4.11),

IPI,I)(X+U, y)-pl,l)(x, Y)I

2j""(I)(v /J log+,) 2 ,rr(O(u')
=- dv+-I --dv
nov n oJuf/ V

while for IX = I,

I](I,I)(X+U, y)_pl,l)(x, y)1

2 fU' (I) (Vii log+,) 2J rr (l)(ulogt )
=- dv+- dv

no v n u, v

= (I) ( uryli log ~) + (i ( U log2 ~) = (i' ( U log2 ~) ,

proving (4.12).

The moduli of smoothness of the conjugate functions P I,0J, po, II, and
P 1,1) exhibit a nicer behavior than the corresponding moduli of continuity,
in accordance with the one-dimensional experience.

LEMMA 6. Iff E Z(ex, f3) and 0 <ex, fJ < 2, then

w 2,API,O), 6) = (i(6'),

W .(711,01 6)=(!)(61!IOg~)
2.1' . ' £5 '

(4.15)

(4.16)

(4.17)

We note that the corresponding estimates for uh"cllll.l l , 6), w 2 , Icllll.l l , 6)
and w2,vcl ll ,I), <5) are the symmetric counterparts of (4.16), (4.15), and
(4.17), respectively.

Proof of Lemma 6. First, we prove that if

0< ex < 2,

then (4.15) holds. This is a consequence of Privalov's theorem if 0 < ex < I
and of Zygmund's theorem if ex = 1. In the general case 0 <ex < 2, we apply
(g), (h), and ([) to gy(X)=PI,O)(X, y) in order to obtain
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This proves (4.15).
Second, we prove (4.16). Let v> 0 and choose e such that e min( IX, 1) = p.

Similar to (4.13),

]<1,O)(X, y+v)+]<I,O)(x, y-V)-2]<1,O)(X, y)

1 IV' 1 1= -; 0 [f(x+u, y+v)-f(x-u, y+v)]2cot2udu

1 IV' 1 1
-; 0 [f(x+u,y-v)-f(x-u,y-v)]2cot2udu

2 IV' 1 1+- [f(x+u, y)-f(x-u, y)]-cot-udu
n 0 2 2

1 fn 1 1
-; v' [f(x+u, y+v)+f(x+u, y-v)-2f(x+u, y)]2cot2udu

1 fn 1 1+- .' [f(x - u, y + v) +f( x - u, y - v) - 2f( x - u, y)] - cot -2 u du,
n 1" 2

(4.18 )

whence

l]<l,O)(X, y + v) +](1,O)(x, Y - v) - 2]<1'°l(x, y)1

=~ IV' (O(WI,Af, u)) du +~ fn (O(W2.y(f, v)) duo (4.19)
no u n v, u

By (c),

IV' (O(wI,Af, u)) du

o u

= (O(v"~) = (O(v/3)

= (0 ( v" log ~) = (0 ( v/3 log ~)

if 0 < IX < 1,

if 1:::; IX < 2. (4.20)
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(4.21 )in _(1'_((_1)2-,-,,_U_:_1')_) du = (i (I'll log ~ '),
',,' U 1',

Combining (4,19 )-( 4.21) yields (4.16).

Third, we prove (4.17). Let u> 0 and fix fJ such that 0 < fJ < min(/l, [ ).
Then choose IJ such that vfJ = rJ. Using representation (1.\ 0) and arguing
similarly to (4.14) and (4.18) results in

Ipl.ll(x+u, Y)+l l l.1l(x-u, y)-2111.11(x, .1')1

4 c,,'1 (I'(w(l(1111, v)) 2 err (((uh(l l l.1li, u))
= - J I., ' dv +-I .. \, dv.
nor n ',," l'

By (4.16) and the choice of fJ,

w 2.,(PI.OI, [') = (I(V I\

whence by (c),

Now, we can complete the proof of (4.\7) in the same manner as above in
the case of the proof of (4.\6).

We use Lemmas 5 and 6 in the proofs of Theorems 2-5. The next lemma
is of basic importance in proving Theorems 6 and 7. To prove Theorem 8
we provide a direct counterexample.

LEMMA 7. Let wl(15) and w2(15) be two moduli oj continuity; WI is strictly
increasing at a certain right-hand neighborhood of 15 = O. Define

(4.22)

where w I I denotes the inverse function oj w 1 at a right-hand neighborhood oj
15 = O. Assume that Xk o < 1 and

Xk~CIXk+1 (k~ko), (4.23)

with a constant eland an integer ko.
Then there exists a function fEe 2" x 2" such that

wl.A.!; b) = (I)(wl(15)),

wI.1,U; b) = (I)(w 2(15)),

and

with a constant C 2 > O.

(4.24)

(4.25)

(4.26)
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It is clear that if

365

°< C(, f3 ~ I,

then Xk is defined for every k=O, I, ... and condition (4.23) is satisfied (but
it may happen that Xk? I for finitely many values of k). In this particular
case, by (4.24H 4.26) there exists a function f E Lip( c(, fJ) such that

(k=O, I, ... )

with another constant C3 > 0. We state this corollary in the form of

LEMMA 8. There exist functions f = fli E Lip( I, fJ), °< fJ ~ I, such that
the estimate

(4.27)

cannot hold.

The symmetric counterpart of Lemma 8 says that there exist (possibly
other) functions f =f, E Lip( c(, I), 0< C( ~ I, such that the estimate

W2.APO.11, b) = 0 (15' log~) (4.28 )

cannot hold.
According to (4.27) and (4.28), estimates (4.11) and (4.12)( i) as well as

(4.16) and (4.17) are the best possible.

Proof o{ Lemma 7. Without loss of generality, we may assume that
w[(15) is strictly increasing for every 15? 0, that X o < I, and that Xk is a
strictly decreasing sequence for k = 0, 1,....

Define f E C2n x 2n as

f(x, y)=O

=0

if - n ~ x ~ n, - n ~ y ~ 0, or ~ ~ y ~ n or

2-k - 1+ 2 -k - 3 ~ Y ~ 2 -k _ 2 -k - 2;

if - n ~ x ~ -xk' Y = 2 - k;
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where k = 0, I, ... in each case; and f(x, y) is defined by means of a linear
interpolation for each x, - rr ,,:; x ,,:; rr, and for each of the intervals

2- k -2 k-2":;y,,:;2 k and 2- k ":;y,,:;2- k+rk
2 (k=O,I, ... ).

First, we will check (4.24). To this effect, let - rr ,,:; x, y,,:; nand u > 0 be
given and we estimate If(x + u, y) - f(x, y)l. We may assume that
0< y < ~ and u < X o; in particular,

(4.29)

and

with some k, 1=0, 1, ....
If k,,:; I, then the "worst" case occurs where y = 2 k.

If(x + u, y) -f(x, y)1

,,:; OJ 2(2 -k 2) = OJ1(OJ\ I( OJ 2(2 -k-2))) = OJ1(xd

,,:; OJ 1( C I X k + I ) ,,:; OJ 1( C 1u) = (9 (OJ 1(u) ).

If k > I, then the "worst" case occurs where y =2 - I:

If(x + u, y) -f(x, y)[

Second, we verify (4.25). To this end, we estimate If(x, y+v)-f(x, y)l,
where - n":; x, y":; n and v> 0 are given. We may assume that 0 < y < ~

and v<!, in particular,

(4.30)

with some k = 0, 1, ....
If y,,:; 2 -k + 2 -k - 2, then clearly

If(x, y+v)-f(x, y)[ ":;OJ2(2 k-2),,:; 2OJ 2(V).

If (4.29) is the case with l< k, then by (4.30),

If(x, y + v) - f(x, y)1

::(w2(2- 1 2)21+2V::(OJ2(2-1-2)21 k=21-kW2(2k-12-k-2)

::(w2(2- k -2),,:; 2w 2(V).



APPROXIMATION TO CONTINUOUS FUNCTIONS

Third, we will show (4.26). Let x = 0,

By definition,

367

(k=O, I, ... ).

f(u, wd = f(u, zd =°
consequently,

for every u,

On the other hand,

I fIT 1 I
r,O)(O,.Y'k)= -; 0 [f(u,Yd-f(-u,YdJ2"cot2"udu

If" k 0 u 1 1
= -- (J)2(2· -)--cot-udu

n 0 X k 2 2

__I fn k 0 n - x I 1
(J)2(2 . ")---cot-udu

n n " Xk 2 2 '

whence

(4.31 )

with a constant C4> 0. Now, (4.26) follows from (4.31) and the trivial
estimate

Uh.,(](!O),2 k 2) ~ 1]i!O)(O, It"k) +]iUl)(O,.:d - 2111.0'(0, Yk)1

= 21]iI.O)(0, Ydl.

5. THE SATURATION PROBLEM

It is easy to see that iffor a functionl EO C 2n x 2n we have

Ila;;1"Cf, x, y) --fix, Y)II = 0 (m ~ I+ n ~ I)
with certain fixed y, <5 > 0, then necessarily f= constant (cf. the
corresponding one-dimensional result in [11, p. 122 J). In other words,
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the operator (J;,;),,(f) IS saturable with the saturation order
[I/(m + I) + I/(n + I)}. The collection of functions

.:F = {IE Cerrxerr: 11(J;,~,,(f x, .1') -f(x, .1')11 = (!J en ~ 1+ n ~ I)}
is called the saturation class of (J;;~,,(f). Now, we can easily show that
f E Cerr x 2rr is a saturation function if and only if

W,(](101,6)=(!(6) and wlToll,6)=(!(6). (5.1)

In fact, if/E.:F, then letting n -->:fe, by Lemma 4 we get for every .1',

11(J;;,(g\, x) - g,(x)11 = (! (_1_)
m+1

and "("" is independent of y. From Alexits' theorem, the first inequality in
(5.1) follows. The second one can be obtained analogously.

Conversely, assume (5.1) holds. Then thanks to relation (4.7), Alexits'
theorem, and the continuity of the operator (J;;(h), we can conclude
eventually that f E.:F.

In a similar manner, we can verify that the operators rr;;;'I1(J! 1.01) and
(J;;;')J!II I) are also saturable with the saturation order {l/(m + I) +
I/(n + I)}. Denote by y"( 1.01 and .~(l.1 I the corresponding saturation classes.
ThenfE.~(1.01 if and only if

(5.2)

while f E .~( 1.11 if and only if

W,(](11.I1,6)=((}(6) and w,(J!1.01,6)=0(15). (5.3)

6. PROOFS OF THEOREMS 1- 5

In each case, the key formula is (4.6) in Lemma 3.

Proof 01 Theorem 1. Since we.x(j; 6) = 0(15'), we have

r f(x+u, Y)+f(x~u, y)-2/(x, Y) du

I/(m+ II U

r
rr (!(u')

= (!(l) -'-e- du
'I/(m+ II U

=0((m+I)IX)

= (Q(iog(m + 2))

if O<iJ.< I,

if iJ. = 1. (6.1 )
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Similarly, W 2 v(f, <5) = (I)(<5 fJ ) and

fco f(x, y+v)+f(x, :-v)-2f (x, y) dv

l/(n+ I) V

= (I) ((n + 1) I - fJ) if 0 < P< 1,

= (I)(log(n+2)) if P=l; (6.2)

and

f
CO fco du dv

22 [f(x+u, y+v)+f(x-u, y+v)-2f(x, y+v)]
l/(m+l) l/(n+I)U V

f
" (I)(u~) fco dv

=(1)(1) -2- du 2
l/(m+l) U l/(n+I)V

= (I)((n+ l)(m+ 1)1-~)

= (I)((n + 1) log(m + 2))

if 0 < a < 1,

if a = 1; (6.3 )

and two more similar estimates.
Combining (4.6) and (6.1)-(6.3) yields (2.6).

Proof of Theorem 2. This time we make use of Lemma 6 together with
Lemma 3 (the latter applied to pI.O)). Analogously to (6.1), by (4.15) we
have

fX pl.O)(X+u, y)+]<I,O)(~_U,y)-2]<"O)(X, y) du

I/(m+ I) U

=(I)((m+l)'-~)

= (I)(log(m + 2))

if 0 < a < 1,

ifa = 1. (6.4 )

By (4.16),

fX ]< I,O)(X, Y + v) + ]< I.O)(~, Y - v) - 2]< I,O)(X, y) dv

I/(n + 1) V

f
" (I)(vfJ log l/v)

=(1)(1) 2 dv
l/(n + 1) V

=(I)((n+1)I- fi log(n+2)) if O<P<l,

=([log(n+2)]2) if P=l; (6.5)

and three more similar estimates.
Collecting (4.6), (4.15), (4.16), (6.4), and (6.5) provides (3.1).

Proof of Theorem 3. It is essentially a repetition of that of Theorem 2,
with the exception that this time we apply Lemma 3 to]< l,l) and use (4.17)
and its symmetric counterpart instead of (4.15) and (4.16).

640/49/4-5
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Proof of Theorem 4. For 0 < :Y. < 1 and 0 < 13 ~ 1, estimates (3.1) and
(3.3) coincide. Thus, we have to prove (3.3) in the case where :Y. = 1 and
0< f3 ~ 1. To this goal, we will apply Lemma 3 to P !Ol while taking
Lemma 2 into account.

To go into details, by assumption g ,(x) E Lip 1 for every y, where
g,.(x) = f(x, y). Therefore, by (4.2)

Y If, PI,O)(X+u, y)+P!O)(x-u, y)-2PI,O)(X, y) 1
2 (u

n(m+ 1) 1/(111+ I) u

= Y I'-,£ gl(x + u) +gJx- u) - 2g(x) du + (!/ (_1_) (6.6)
n(m+l) 1/1111+1) u2 m+l'

where "(D" is independent of x and y. Estimate (6.6) clearly remains true if y
is replaced in turn by y + v and y - v.

Due to (4.16), a simple computation gives

6 r P!O)(x, y+v)+ll!O)(_~,y-v)-211!O)(x, y) dv

n(n+l) 1/(n+l) V

6 I" (!(V
li log l/v)

= dv
n(n + 1) I/(n + I) v2

= (!,. Cog(n + 2)) if 0<13<1,
(n + 1)fi

= (!' ([log(n + 2)J2) if f3 = 1, (6,7)
n+l

where "(!" is independent of x and y.
Finally, we apply Lemma 3 to P!O). Then by (4.6), (6.6) (with y, y + l',

and y-v), (6.7), (4.15), and (4.16) we get

ICJ"" (l(!O) x v) -1 11 ,0)( \: ")1tnn . " " . ~ , J

46 If dv ( 1 )- -(!! --
- n(n + 1) I/In + 1) v2 m + 1

if 0 < fJ < 1

if f3 = 1
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if fi = I

if 0 < fi < I

(6.8)

\

(!) (IOg(n + 2))

(
I) (n+I)/3

=(!) m+1 + (!)([log~n++12)]2)

where the "(!)" are independent of x and y. This proves (3.3) in the case
IX = I and 0 < fi ~ 1.

Proof of Theorem 5. For 0 < IX, (3 < I estimates (3.2) and (3.4) coincide.
Also we have to prove (3.4) in the case where max (IX, (3) = 1. For example,
let IX = I and 0 < (3 ~ 1.

We introduce an auxiliary function G, defined by

, fX]iI'O)(X+u, y)+]iI,O)(X-u, y)-2]iI,O)(x, y)
G,(x, .y) = 2 duo

, u

By assumption fELip(l, fi), and thus g,,(x)=f(x,y)ELip I for every y.
Applying Lemma 2 to g" results in the crucial estimate

G,(x, y) = (!)(l) as t -> +0, (6.9)

where "(!)" is uniform in x and y.
We will consider the conjugate function to G, with respect to y:

- 1 f1t 1 I
G~O,I)(X,y)= -; 0 [G,(x,y+v)-G,(x,y-v)]"2cot"2vdv.

On the one hand, keeping (6.8) in mind, G~O.I) can be estimated in the
following way. Let <; = 1/{3 and decompose the integral fg = f~ + f~ with
respect to v:

G~O.I)(X, y)

If" 1 1 fx du= - - - cot - v dv -
7f 0 2 2 (u2

x {[]iI,O)(X+u, y+v)-]iI,O)(x+u, y-v)]

+ [J(i.OI(X-U, y+V)_]iI.O)(X-u, y-v)]

-2[JII,O)(X, y+V)_]il,O)(X, y-v)]}

111t 1 1 IX du- - - cot - v dv 2'
7f r 22 ,u

x {[JII.O)(X+u, y+V)+]iI,O)(X-u, Y+V)-2]iI,O)(X, y+v)]

- [Ji 1,O)(X+u, y-v)+]ll,O)(x-u, y-V)-2]il,O)(X, y-v)]}

say. (6.10)
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By (4.11),
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4 II' dv ( I) JX duIJ,I=- -(!' vlJlog- ----0
nov v I u-

= ~ 0 ( t"P log ~) = 0 (lOg ~) as t ---> +0. (6.11 )

To estimate J 2 , the decisive fact is that the inner integral is 0(1) due to
Lemma 2. So

as t ---> +0. (6.12)

To sum up, (6.11) and (6.12) yield

as t ---> +0, (6.13 )

where the "(I)" are independent of x and y.
On the other hand, by Fubini's theorem (cf. (6.6))

G~O.l)(X, y)

Jx du ( 1 I" 1 1= """"2 - - [pt.O)(x + u, y + v) _.lII,O)(X + U, Y - v)] -2 cot -2 v dv
I uno

(6.14 )

Combining (6.13) and (6.14) results in

'}' IX pl,l)(x+u, y)+PI.I)(~-U,y)_2Pl,I)(X, y) du

n(m+ 1) 1/(m+l) U

_ y -(0,1) _ (IOg(m+2))
- n(m + 1) G1/(m+ I)(X, y) - 0 m + 1 '

where "0" is independent of x and y.

(6.15 )
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Similarly, in case f3 = 1 we have

(5 f·X) pl,lI(X, Y + v) +PUl(~, Y - v) - 2pl,ll(x, y) dv

n(n+ 1) 1/(n+11 V

= (!i (IOg(n + 2»)
n+ 1 '
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(6.16 )

while in case 0 < f3 < 1 we have (making use of the symmetric counterpart
of (4.17»

(5 fX pl,ll(x, y+V)+Pl,lI(~, y-V)-2PI,I)(X, y) dv

n(n + 1) I/(n + I) V

~(i}(l)fX.. 0(vfi - 2 10g V)dV=0(IOg(n+2»), (6.17)
n+l 1i (n+ll (n+l)f!

where "(!i" is independent of x and y.
Now we apply Lemma 3 to p 1,1 I. On account of (4.6), (6.15 )-(6.17)

(clearly, (6.15) holds true if y is replaced in turn by y + v and y - v), (4.17),
and its symmetric counterpart, we can conclude that

!a;;7n(pl,ll, x, y) _pl,ll(x, y)1

= 4(5 fX dv 0 (IOg(m + 2») + 0 (IOg(m + 2»)
n(n+ 1) 1/(n+l) v2 m+ 1 m+ 1

/Ii: (IOg(n + 2») (IOg(m + 2) log(n +2»)
+~) + (!i +---,,-

(n + 1)fi m + 1 (n + 1)f!

= (!i (IOg(m +2) + log(n +2»)
m + 1 (n + l)f! '

where the "0" are uniform in x and y. This proves (3.4) in the case where
rJ. = 1 and 0 < f3 ~ 1.

The proof in the case 0 < rJ. ~ 1 and f3 = 1 is similar and therefore we omit
it.

7. PROOFS OF THEOREMS 6-8

As before, we set gv(x) = f(x, y). Then

g,,(x) = ](1,O)(x, y)

and
---....-

gy(x)=PI.O)(x, y)(I,O)= -f(x, y)+f(O, y). (7.1 )
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Proof of Theorem 6. If (3.5)( i) holds, then letting n ->x via Lemma 4.
we get for every fixed y

O";'"(g,,X)-g,(X)=o( II)'. '. (m+ r (7.2)

If r:J. = 1, this implies that g,(x) = constant depending on y, since I/(m + I)
is the saturation order. This is a contradiction.

Now we deal with the case 0 < r:J. < 1. From (7.2) it follows that

Em (g,) = 0 em ~ 1)').

which implies in turn by (g)

and by (a),

According to (7.1), the latter inequality is equivalent to

wJf, 0) = 0(0')

which is impossible in general.
Second, assume that (3.5)(ii) holds. Letting m ->x via Lemma 4, we get

for every fixed x

6 (IOg(n+2))
O"I1(hp y)-h,(Y)=o (n+1)fl '

where this time we set hAy) = P I.O)(X, y) with f E Lip(r:J., f3), 0 < f3 < I, from
Lemma 8. This yields

(
IOg(n + 2))

E,,(h,)=o (n+1)fl '

whence by (g)

- _ (fl ~)w ..(h p i)) - 0 0 log 0

which is equivalent to

w,(J( 1.0), 0) = 0 ( Ofl log ~).

The latter estimate cannot hold owing to Lemma 8.
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(7.3 )

Third, assume that (3.5)(iii) holds. Letting again m --+ 00, via Lemma 4
we get for every fixed x,

(J6(h, ')-h ( )=o([log(n+2)]2)
nx} xY n+l

with another h,(y) = jfl,O)(X, y), where f E Lip(l, 1) will be defined later
on. We apply Lemma 1 to h, E C2n and <5 > O. By (4.1),

(J~(h" y) - hAy)

_ <5 fcx hAy+v)+hAy-v)-2hAy) dv
- n(n + 1) I/ln + I) v2

whence, on account of (7.3), we get that

b fX jfI.O)(x, y+v)+jfI.O)(x, y-V)-2jfl.0)(X, y)
2 dv

n(n+l) I/(n+l) V

+ (i1 (w .(711,0) _1)) = ° ([log(n + 2)]2).
2.\ , n + 1 n + 1

By (4.11), we have

(7(1,0) _1) = n (IOg(n + 2))
W 2 \ , (i1 l ', n+ 1 n+

Combining this inequality with (7.4) yields

, _ _ fnjfI.O)(X, y+v)+jfI.O\x, y-v)-2jfI.0)(x, y)
J,(x, }) - 2 dv

, v

(7.4 )

as t --+ +0. (7.5)

On the other hand, consider the function f E C 2n x 2n defined by

f(x, y)=min(x, y, n-x, n- y) if O~X, y~n,

= 0 if - n ~ x ~ 0, - n ~ y ~ n, or

o~ x ~ n, - n ~ y ~ O.

It is obvious that f E Lip(l, 1). Setting x = 0, by definition,

1 rn 1 1
jfl,O)(O, y) = -; J

o
f(u, y) 2cot 2u duo
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Setting also y = 0,

rrr 1(10 )(0, v)
J1(0,0)= -I· ) dv

·1 v-

1 'rr r1f(U, v) 1 1=-J ---cot-udvdu
7t 1'0 v2 2 2 '

whence

fTt!2 frr!2 dv du L 7t l2
J1(0,0)?C s --=Cs log-2

1 1 v u t
(7.6 )

with a constant Cs > O. Clearly, (7.5) and (7.6) contradict each other.

Proof of Theorem 7. Assume that (3.6) holds with the f E Lip( ex, 1) from
the symmetric counterpart of Lemma 8, i.e., for which (4.28) is not
satisfied. Set q>v(x) = P 1.1 l(x, y) for every fixed y. Then by letting n -> 00 in
(3.6), due to Lemma 4, we get that

" (IOg(m + 2))
(J;,Jq>" x) - q>,(x) = 0 ( .

m+1Y

Hence obviously

(
IOg(m + 2))

Em (q>,) = 0 (m + I Y

and, by the second Stechkin inequality,

(]il
l ) ')_ ( ')_ ("1 1)w 2•x , u - W 2 q>" i> - 0 (5 og b .

Since

-----------cPv(X)=pl.I)(X, y)II.OI= _pO.ll(X, y)+PO.ll(O, y)

(cf. (7.1)), we can conclude, using (a), that

(](0.1) ')_ (_ ~)_ (~'I 1)w 2.x , u - W 2 q>y' u - 0 u og b .

But the inequality just obtained cannot hold according to the symmetric
counterpart of Lemma 8.

Proof of Theorem 8. We setf(x, y) = g(x), where gE C 2rr is defined by
the condition that

7t
g(x) = Ixl-­

2
if -7t:S;x:S;7t,
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i.e., g = - g (if we require in addition that g(O) = 0). Clearly gE Z(1), so by
(b) (with £=0) we also have gEZ(I), and thusfEZ(I, I).

Now if (3.7) holds, then letting n -4 00, via Lemma 4 we get that

" _ _ (IOg(m + 2))
O';,,(g,x)-g(x)=o m+1 .

Putting x = 0, and using Lemma 2,

(7.7)

O';;,(g, 0) - g(O)

= 'Y fn g(u) +g( -~) - 2g(0) du + (!J (W2(g, _1_))
n(m+ I) I/(m+lj U m+ I

'Y fn 2u (I)= -du+(!J --
n(m+l) 1/(m+ljU

2 m+1

2" ( I )= r I) log n(m + I ) + (!J -- .
n(m+ m+ I

This contradicts (7.7) and the proof of Theorem 8 is complete.
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